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Scaling Limits of Waves in Convex Scalar
Conservation Laws Under Random Initial
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We study waves in convex scalar conservation laws under noisy initial perturbations. It
is known that the building blocks of these waves are shock and rarefaction waves, both
are invariant under hyperbolic scaling. Noisy perturbations can generate complicated
wave patterns, such as diffusion process of shock locations. However we show that
under the hyperbolic scaling, the solutions converge in the sense of distribution to
the unperturbed waves. In particular, randomly perturbed shock waves move at the
unperturbed velocity in the scaling limit. Analysis makes use of the Hopf formula of
the related Hamilton-Jacobi equation and regularity estimates of noisy processes.
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1. INTRODUCTION

Deterministic wave solutions are well studied for the convex scalar conservation
law:

ut + (H (u))x = 0, (1.1)

H a convex function, H (u)/u → +∞ as |u| → ∞. Classical results(3,5) are that
the general waves are made up of shocks and rarafaction waves generated from
scaling invariant initial data u(x, 0) = χR±(x), the characteristic functions of the
left or right half lines. Both types of waves are asymptotically stable under spatially
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localized initial perturbations(3). Effects of random perturbations have been studied
for Burgers equation (H = u2/2),(2,6,7). Complex wave patterns arise in particular
from shocks. Analysis of the present authors(6,7) showed that at large times the
stochastic (either from random initial data or flux) Burgers shock waves diffuse
around their mean (deterministic) location. More precisely, the Burgers shock
front location obeys Gaussian statistics (central limit theorem)(6,7). Rarefaction
waves are more stable under initial random perturbation, and remain close in the
sense of probability to the unperturbed ones at large times(2).

In this paper, we study the limit of initially randomly perturbed waves for
general convex scalar laws by means of the hyperbolic scaling x → x

ε
, t → t

ε
,

as ε → 0. This turns out to be simpler than a large time asymptotic analysis of
random perturbative effects on waves as seen for the Burgers equation if we are not
interested in detailed information such as statistics of shock locations. Quantities
such as shock speeds are captured in the scaling limit. We first consider white noise
Wx (x) initial perturbation, W (x) the standard Wiener process. Namely, u(x, 0) =
χR± (x) + Wx (x). The scaled solutions then satisfy the same scalar law with initial
data uε(x, 0) = χR±(x) + Wx (x/ε). Due to unbounded and irregular perturbation
from random process, solutions to (1.1) are understood as distributional derivative
of Hopf solutions (Section 2) to the Hamilton-Jacobi equation:

vε
t + H

(
vε

x

) = 0, vε(x, 0) = xχR± (x) + εW (x/ε). (1.2)

The problem reduces to analysis of vε as ε → 0. The initial data of (1.2) is almost
surely Hölder continuous and grows sublinearly in x . With the help of Hopf
formula (Section 2) and its properties, we show

Theorem 1. With probability one, uε converges in the sense of distribution to the
unperturbed solution of (1.1) which is either shock (minus sign) or a rarefaction
wave (plus sign).

Consequently, both shock and rarefaction waves are stable under white noise
perturbations in the hyperbolic scaling limit, and the shock wave speeds are un-
changed. The robustness of Theorem 1.1 is shown through extension to other types
of noise including the colored Gaussian noise (Section 3).

The paper is organized as follows. Section 2 analyzes Hopf formula and
establishes compactness as well as limits of scaled Hamilton-Jacobi solutions vε

in the case of white noise initial perturbation. This is followed by the proof of
Theorem 1.1. Section 3 extends the results to more general noisy perturbations.
Conclusions are in Section 4.
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2. HOPF SOLUTIONS AND LIMITS

Let u solve the one dimensional scalar convex Hamilton-Jacobi equation:

ut + H (ux ) = 0, (2.1)

with convex Hamiltonian H and initial data u(0, x) = G(x). The function G is in
the form: G(x) = � + g(x), where g(x) is locally Hölder continuous, and grows
no faster than linearly in x , i.e. for some positive constant C(g):

|g(x) − g(x ′)| ≤ C(g)(|x − x ′|β + |x − x ′|), (2.2)

with β ∈ (0, 1); �(x) = xχR± (x). Clearly, G satisfies (2.2) with a constant C(G).
Assume that:

H (p)

|p| → +∞ as p → ∞, H is convex. (2.3)

Under (2.3), it is known(1) that the Lagrangian function L exists as Legendre
transform of H , and satisfies (2.3) as well. Moreover, the Hopf’s formula:

u(x, t) = min
y∈R

{
t L

(
x − y

t

)
+ G(y)

}
, (2.4)

is well-defined in the sense that the minimum is achieved. Provided that u(x, t)
is continuous in (x, t) which we prove below, Hopf solution (2.4) is the unique
viscosity solution [1] by convexity of H and L . For Hölder continuous initial data
with at most linear growth (2.2), Hölder continuity easily persists in x , however
this is not as clear in time. In contrast, for Lipschitz continuous initial data [1],
u(x, t) is space-time Lipschitz continuous over x ∈ R and t ≥ 0.

Lemma 1. The Hopf solution u(x, t) is uniformly continuous over any compact
space-time region D = [x1, x2] × [t1, t2], t1 ≥ 0, x1, x2 ∈ R. Moreover, ∀x̂, x, t ≥
0,

|u(x̂, t) − u(x, t)| ≤ C(G)(|x̂ − x |β + |x̂ − x |). (2.5)

Proof. Fix t > 0, x, x̂ ∈ R. Pick y ∈ R such that

t L

(
x − y

t

)
+ G(y) = u(x, t), y depending on x, t.

Then

u(x̂, t) − u(x, t) = −t L

(
x − y

t

)
− G(y) + inf

z

{
t L

(
x̂ − z

t

)
+ G(z)

}
≤

z=x̂−x+y G(x̂ − x + y) − G(y) ≤ C(G)(|x̂ − x |β + |x̂ − x |).
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Interchanging x̂ and x gives:

|u(x̂, t) − u(x, t)| ≤ C(G)(|x̂ − x |β + |x̂ − x |), (2.6)

which is (2.5).
Taking y = x in (2.4), we bound u from above

u(x, t) ≤ t L(0) + G(x). (2.7)

Now consider small time t . For any ε > 0, there is δ1 > 0, such that if |x − y| ≤ δ1,
|G(y) − G(x)| ≤ ε/2. Due to superlinear growth of L for large argument, the
minimizer of Hopf formula (2.4) is attained. We denote the minimizer by y∗ and
observe that |y∗ − x | ≤ δ1 if x ∈ [−M, M] and t ≤ t1 = t1(δ1, M) < 1. Suppose
otherwise, then t L((x − y∗)/t) in (2.4) grows faster than 2C(G)|x − y∗|, if t is
small enough depending only on δ1 and M . Inequality (2.7) implies that

2C(G)|x − y∗| + G(y∗) ≤ t L(0) + max
x∈[−M,M]

G(x) ≤ C1 = C1(M),

and so |y∗| ≤ C2 = C2(M). By (2.4), u(x, t) would diverge as t → 0, contradicting
(2.7).

Using the fact that L(·) ≥ −C(L), for some positive constant C(L), we have:

u(x, t) = G(x) + t L((x − y∗)/t) + G(y∗) − G(x)

≥ G(x) − tC(L) − ε/2,

and together with (2.7):

|u(x, t) − G(x)| ≤ t max(C(L), L(0)) + ε/2 ≤ ε,

if t ≤ t1(δ1, M) < ε/(2 max(C(L), L(0))). This proves the uniform continuity of
u in t as t → 0 over any compact interval of x .

In terms of any positive time s ∈ (0, t), thanks to convexity of L , Hopf
formula reads [1]:

u(x, t) = min
y∈R

{(t − s)L((x − y)/(t − s)) + u(y, s)} .

As C(u(x, s)) ≤ C(G), we repeat the above analysis to obtain the uniform conti-
nuity at t = s. The proof is complete. �

Lemma 2. Let (Wt ), t ≥ 0 be a one-dimensional Wiener process starting from
0, that is, a Gaussian process with E[Wt ] = 0 and E[Ws Wt ] = min(s, t). Let
0 < α < 1

2 , p > 1/2. Then for any sequence εn → 0, there exists a subsequence
εn j → 0 such that with probability one the functions t 
→ ε

p
n j W ( t

εn j
) satisfy the

Hölder condition with the exponent α uniformly in n j . That is with probability
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one, there exists a C such that for every n j and for every s, t ∈ [0, 1]

ε p
n j

∣∣∣∣W
(

t

εn j

)
− W

(
s

εn j

)∣∣∣∣ ≤ C |t − s|α, (2.8)

where the constant C depends on the realization of the process W . Together with
the almost sure bounds on the growth of the Wiener process for large arguments,
this implies for any n j , t , s:

ε p
n j

∣∣∣∣W
(

t

εn j

)
− W

(
s

εn j

)∣∣∣∣ ≤ C ′(|t − s|α + |t − s|), (2.9)

with probability one, and with a realization dependent constant C ′.

Proof. the classical theorem of Kolmogorov (page 53, [4]) asserts that the ran-
dom variable

L = sup
s,t∈[0,1]

|Wt − Ws |
|t − s|α

is finite with probability one and, consequently,

P[L ≥ k] → 0

as k → ∞. We can thus choose integers kn → ∞ so that

∞∑
n=1

P[L ≥ kn] < ∞.

Choosing subsequence n j such that ε
1
2 −p

n j ≥ kn , we have, since (√εn j W t
εn j

)0≤t≤1

is another Wiener process,

P


 sup

s,t∈[0,1]

ε
p
n j

∣∣W t
εn j

− W s
εn j

∣∣
|t − s|α ≥ 1


 ≤ P [L ≥ kn] ,

so, by the first Borel-Cantelli lemma, we have

sup
s,t∈[0,1]

∣∣ε p
n j W t

εn j
− ε

p
n j W s

εn j

∣∣
|t − s|α ≤ 1

for all but finitely many n j . Since the supremum is finite for the remaining values
of n j by the Kolmogorov theorem, (2.8) follows. Invoking the law of iterated
logarithm [4], we have (2.9), and the lemma is proved.
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Remark 21. Existence of the sequence εn j is sufficient for the proof of our main
theorem. It is possible, using arguments related to the proof of the Kolmogorov
theorem together with the Gaussian distribution of the Wiener process increments,
to prove that with probability one all functions t 
→ εW ( t

ε
), where ε ∈ (0, 1) satisfy

the Hölder condition uniformly in ε. We do not include the proof, since it is longer
and the result is not used in the present paper.

Proof of Theorem 1.1: solutions to the convex scalar conservation law:

ut + H (u)x = 0,

u|t=0 = �x (x) + Vx , (2.10)

that is wave plus the white noise perturbation as initial data, are intepreted as
distributional derivative in x of the solutions of the Hamilton-Jacobi problem
(2.1). Under the scaling x → x/ε, t → t/ε, we obtain solutions of the scaled
equation:

uε
t + (H (uε))x = 0, t ∈ [0, T ]

uε |t=0 = �x (x) + Vx

( x

ε

)
. (2.11)

We write uε = ūε
x , and the latter solves:

ūε
t + H

(
ūε

x

) = 0,

ūε |t=0 = �(x) + εW
( x

ε

)
. (2.12)

The solution ūε is given by Hopf’s formula. It follows from the lemmas proven
above that with probability one, the sequence ūε is equi-continuous hence compact
in C([0, T ], Cloc(R1)), any T > 0. For almost all random realizations, we can
choose a sequence of the values of ε → 0 such that ūε → v, pointwise on compact
sets of R+ × R. As the scaled noisy part of the initial data converges to zero almost
surely on compact set, the limit v is the unique Hopf solution of the problem:

vt + H (vx ) = 0, v|t=0 = �(x).

In other words, the scaled noisy solution uε converges to the unperturbed waves
ū = vx , in the sense of distribution for almost all realizations. The proof is com-
plete.

Remark 22. In case of shock wave data, we have as ε → 0:

uε = u

(
x

ε
,

t

ε

)
−→ χR−(x − cst),
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in the sense of distribution, where cs is the unperturbed shock speed. Thus in the
scaling limit, shock speeds are invariant under noisy initial perturbations.

3. GENERALIZATION

We generalize Theorem 1.1 to include non-white stationary initial noisy
perturbations, which still satisfy the Hölder regularity property (2.9). Precise
conditions are stated in the lemma below, which applies in particular to a class of
Gaussian colored noises. As a result, the proof of Theorem 1.1 extends beyond
the white noise case.

The following lemma gives a sufficient condition for existence of a modifi-
cation X̃ (t) of the original process X (t) and of a subsequence of positive numbers
εn ↓ 0 such that the rescaled processes

X̃n(t) = εn X̃

(
t

εn

)

satisfy with probability one a Hölder condition on [0, 1] uniformly in n. The
modified process X̃ differs from X only for events of probability zero, i.e, P[X̃t =
Xt ] = 1, for any t , [4].

In order to make sure that the process X has a Hölder-continuous modification
to begin with, a classical way is to assume that the increments of X satisfy the
moment condition in the statement of the lemma below. Remarkably, as the lemma
shows, this necessary condition turns out to be sufficient for the rescaled processes
to satisfy the Hölder condition (with some choice of the sequence εn) as well.

Lemma 1. Suppose that a process with stationary increments Xt , t ≥ 0, satisfies
the condition

E[|Xt − Xs |α] ≤ C |t − s|1+β

for some positive constants C, α and β such that 1 + β < α and for all s and
t. Let γ be any number satisfying 0 < γ <

β

α
. Then for any sequence εN ↓ 0,

there exists a modification X̃ (t) and a subsequence εn ↓ 0 such that the rescaled
processes X̃n(t), defined above, satisfy:

sup
n

sup
s,t∈[0,1]

X̃n(t) − X̃n(s)

|t − s|γ < +∞

Proof. The classical Kolmogorov-Chentsov theorem ([4], p. 53) implies the ex-
istence of a continuous modification x̃ of x (for all t > 0) such that with probability
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one

L
def= sup

s,t∈[0,1]

|X̃ (t) − X̃ (s)|
|t − s|γ < +∞.

for any γ ∈ (0,
β

α
). Moreover, it follows from its proof that there exist constants

δ(K ) → 0 which only depend on C , α and β, such that

P[L > K ] ≤ δ(K )

for all K . Now let κ = 1+β

α
. By our assumption κ < 1. For any ε > 0 consider the

process

Yε(t)
def= εκ X̃

(
t

ε

)
.

This process satisfies the same moment condition as X and thus the same bounds
on large deviation probabilities for the analog of L:

P

[
sup

s,t∈[0,1]

Yε(t) − Yε(s)

|t − s|γ > K

]
≤ δ(K )

where γ and δ(K ) are as above. Note that since Y is defined in terms of the
continuous process X̃ , no further continuous modification is necessary to guarantee
the above inequality. Now let us choose a subsequence εn ↓ 0 so that Kn ≡ ε−1

n ,
go to +∞ fast enough to satisfy:

∞∑
n=1

δ
(
K 1−κ

n

)
< +∞.

Then

P

[
sup

s,t∈[0,1]

|X̃n(t) − X̃n(s)|
|t − s|γ > 1

]
= P

[
sup

s,t∈[0,1]

∣∣∣Yεn (t) − Yεn (s)
∣∣∣ > K 1−κ

n

]
≤ δ(K 1−κ

n )

and it follows from the first Borel-Cantelli lemma that for all but finitely many n
we have

sup
s,t∈[0,1]

X̃n(t) − X̃n(s)

|t − s|γ < 1.

Since for the remaining n the above supremum is finite, the lemma follows.

Remark 31. Inequality (2.9) follows from Lemma 3. under mild additional as-
sumptions ensuring that for |t − s| ≥ 1 we have |X (t) − X (s)| ≤ C |t − s| with a
realization-dependent finite constant C. This is, for example, true for stationary-
increment Gaussian processes with an appropriate decay of correlations, as in the
example below.
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Example: The above lemma applies in particular to “colored Gaussian noise”:

Xt =
∫ t

0
C(u) du,

where C(u) is a stationary, mean-zero Gaussian process with the covariance

K (u) = E[C(0)C(u)]

satisfying

V =
∫

R
|K (u)| du < +∞.

To see this, let us take α = 4 and estimate (with s < t , �u = (u1, u2, u3, u4)):

E[(Xt − Xs)4] =
∫

[s,t]4

E[C(u1)C(u2)C(u3)C(u4)] d �u

=
∫

[s,t]4

E[K (u1 − u2)K (u3 − u4) + K (u1 − u3)K (u2 − u4)

+K (u1 − u4)K (u2 − u3)] d �u,

using the standard Gaussian moment formula. Since the last expression is bounded
by 3|t − s|2V 2, X satisfies the assumption of the lemma with α = 4 and β = 1. A
similar calculation allows to take α = 2k and β = k − 1 for any positive integer k,
thus proving that γ in the statement of the lemma can be chosen arbitrarily close
to 1

2 . Of course, the paths of X are smooth functions of t and therefore satisfy
the Lipschitz condition (i.e. the Hölder condition with γ = 1) but the Lipschitz
constant grows with the length of the interval and the statement of the lemma fails
with γ = 1 or, in fact, with any γ ≥ 1

2 . This is not surprising, since in this case
the rescaled processes Yε converge to the Wiener process as ε goes to zero.

4. CONCLUSIONS

Under the hyperbolic scaling limit, the wave solutions, shock and rarefaction
waves, of the convex scalar conservation laws are shown to be stable with proba-
bility one in the sense of distribution under white and colored noisy perturbations
with finite correlation at initial time. Our approach is simple and effective so long
as detailed structures such as shock locations are not concerned with. The central
limit theorem on shock locations for convex laws – a natural extension of results on
the shocks speed – requires different methods and will be addressed in a separate
work.
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